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2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an m× n matrix, the product Ax
was defined for any n-column x in Rn as follows: If A =

[
a1 a2 · · · an

]
where the a j are the

columns of A, and if x =


x1
x2
...

xn

, Definition 2.5 reads

Ax = x1a1 + x2a2 + · · ·+ xnan (2.5)

This was motivated as a way of describing systems of linear equations with coefficient matrix A.
Indeed every such system has the form Ax = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying matrices in
general, and then investigate matrix algebra for its own sake. While it shares several properties of
ordinary arithmetic, it will soon become clear that matrix arithmetic is different in a number of
ways.

Matrix multiplication is closely related to composition of transformations.

Composition and Matrix Multiplication

Sometimes two transformations “link” together as follows:

Rk T−→ Rn S−→ Rm

In this case we can apply T first and then apply S, and the result is a new transformation

S◦T : Rk → Rm

called the composite of S and T , defined by

(S◦T )(x) = S [T (x)] for all x in Rk

T S

S◦T

Rk Rn Rm

The action of S ◦T can be described as “first T then S ” (note the
order!)6. This new transformation is described in the diagram. The
reader will have encountered composition of ordinary functions: For
example, consider R g−→ R f−→ R where f (x) = x2 and g(x) = x+ 1 for
all x in R. Then

( f ◦g)(x) = f [g(x)] = f (x+1) = (x+1)2

(g◦ f )(x) = g [ f (x)] = g(x2) = x2 +1

6When reading the notation S ◦T , we read S first and then T even though the action is “first T then S ”. This
annoying state of affairs results because we write T (x) for the effect of the transformation T on x, with T on the
left. If we wrote this instead as (x)T , the confusion would not occur. However the notation T (x) is well established.
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for all x in R.
Our concern here is with matrix transformations. Suppose that A is an m× n matrix and B

is an n× k matrix, and let Rk TB−→ Rn TA−→ Rm be the matrix transformations induced by B and A
respectively, that is:

TB(x) = Bx for all x in Rk and TA(y) = Ay for all y in Rn

Write B =
[

b1 b2 · · · bk
]

where b j denotes column j of B for each j. Hence each b j is an
n-vector (B is n× k) so we can form the matrix-vector product Ab j. In particular, we obtain an
m× k matrix [

Ab1 Ab2 · · · Abk
]

with columns Ab1, Ab2, · · · , Abk. Now compute (TA ◦TB)(x) for any x =


x1
x2
...

xk

 in Rk:

(TA ◦TB)(x) = TA [TB(x)] Definition of TA ◦TB
= A(Bx) A and B induce TA and TB
= A(x1b1 + x2b2 + · · ·+ xkbk) Equation 2.5 above
= A(x1b1)+A(x2b2)+ · · ·+A(xkbk) Theorem 2.2.2
= x1(Ab1)+ x2(Ab2)+ · · ·+ xk(Abk) Theorem 2.2.2
=

[
Ab1 Ab2 · · · Abk

]
x Equation 2.5 above

Because x was an arbitrary vector in Rn, this shows that TA◦TB is the matrix transformation induced
by the matrix

[
Ab1 Ab2 · · · Abn

]
. This motivates the following definition.

Definition 2.9 Matrix Multiplication

Let A be an m×n matrix, let B be an n× k matrix, and write B =
[

b1 b2 · · · bk
]

where
b j is column j of B for each j. The product matrix AB is the m×k matrix defined as follows:

AB = A
[

b1 b2 · · · bk
]
=
[

Ab1 Ab2 · · · Abk
]

Thus the product matrix AB is given in terms of its columns Ab1, Ab2, . . . , Abn: Column j of
AB is the matrix-vector product Ab j of A and the corresponding column b j of B. Note that each
such product Ab j makes sense by Definition 2.5 because A is m× n and each b j is in Rn (since B
has n rows). Note also that if B is a column matrix, this definition reduces to Definition 2.5 for
matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above computation give

A(Bx) =
[

Ab1 Ab2 · · · Abn
]
x = (AB)x

for all x in Rk. We record this for reference.
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Theorem 2.3.1
Let A be an m×n matrix and let B be an n×k matrix. Then the product matrix AB is m×k
and satisfies

A(Bx) = (AB)x for all x in Rk

Here is an example of how to compute the product AB of two matrices using Definition 2.9.

Example 2.3.1

Compute AB if A =

 2 3 5
1 4 7
0 1 8

 and B =

 8 9
7 2
6 1

.

Solution. The columns of B are b1 =

 8
7
6

 and b2 =

 9
2
1

, so Definition 2.5 gives

Ab1 =

 2 3 5
1 4 7
0 1 8

 8
7
6

=

 67
78
55

 and Ab2 =

 2 3 5
1 4 7
0 1 8

 9
2
1

=

 29
24
10



Hence Definition 2.9 above gives AB =
[

Ab1 Ab2
]
=

 67 29
78 24
55 10

.

Example 2.3.2

If A is m×n and B is n× k, Theorem 2.3.1 gives a simple formula for the composite of the
matrix transformations TA and TB:

TA ◦TB = TAB

Solution. Given any x in Rk,

(TA ◦TB)(x) = TA[TB(x)]
= A[Bx]
= (AB)x
= TAB(x)

While Definition 2.9 is important, there is another way to compute the matrix product AB that
gives a way to calculate each individual entry. In Section 2.2 we defined the dot product of two n-
tuples to be the sum of the products of corresponding entries. We went on to show (Theorem 2.2.5)
that if A is an m × n matrix and x is an n-vector, then entry j of the product Ax is the dot
product of row j of A with x. This observation was called the “dot product rule” for matrix-vector
multiplication, and the next theorem shows that it extends to matrix multiplication in general.
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Theorem 2.3.2: Dot Product Rule
Let A and B be matrices of sizes m×n and n× k, respectively. Then the (i, j)-entry of AB is
the dot product of row i of A with column j of B.

Proof. Write B =
[

b1 b2 · · · bn
]

in terms of its columns. Then Ab j is column j of AB for each
j. Hence the (i, j)-entry of AB is entry i of Ab j, which is the dot product of row i of A with b j.
This proves the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, multiply corresponding entries, and add the results.

  =

 

row i
column j
(i, j)-entry

AB
AB

Note that this requires that the rows of A must be the same length as the columns of B. The
following rule is useful for remembering this and for deciding the size of the product matrix AB.
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Compatibility Rule

A B

m× n n′ × k

Let A and B denote matrices. If A is m×n and B is n′×k, the product
AB can be formed if and only if n = n′. In this case the size of the
product matrix AB is m× k, and we say that AB is defined, or that
A and B are compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the following convention:

Convention
Whenever a product of matrices is written, it is tacitly assumed that the sizes of the factors are
such that the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 2.3.1.

Example 2.3.3

Compute AB if A =

 2 3 5
1 4 7
0 1 8

 and B =

 8 9
7 2
6 1

.

Solution. Here A is 3×3 and B is 3×2, so the product matrix AB is defined and will be of
size 3×2. Theorem 2.3.2 gives each entry of AB as the dot product of the corresponding row
of A with the corresponding column of B j that is,

AB =

 2 3 5
1 4 7
0 1 8

 8 9
7 2
6 1

=

 2 ·8+3 ·7+5 ·6 2 ·9+3 ·2+5 ·1
1 ·8+4 ·7+7 ·6 1 ·9+4 ·2+7 ·1
0 ·8+1 ·7+8 ·6 0 ·9+1 ·2+8 ·1

=

 67 29
78 24
55 10


Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)- and (2, 4)-entries of AB where

A =

[
3 −1 2
0 1 4

]
and B =

 2 1 6 0
0 2 3 4

−1 0 5 8

 .

Then compute AB.

Solution. The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B
(highlighted in the following display), computed by multiplying corresponding entries and
adding the results.

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

 (1, 3)-entry = 3 ·6+(−1) ·3+2 ·5 = 25
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4 of B.

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

 (2, 4)-entry = 0 ·0+1 ·4+4 ·8 = 36

Since A is 2×3 and B is 3×4, the product is 2×4.

AB =

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

=

[
4 1 25 12

−4 2 23 36

]

Example 2.3.5

If A =
[

1 3 2
]

and B =

 5
6
4

, compute A2, AB, BA, and B2 when they are defined.7

Solution. Here, A is a 1×3 matrix and B is a 3×1 matrix, so A2 and B2 are not defined.
However, the compatibility rule reads

A B
1×3 3×1 and B A

3×1 1×3

so both AB and BA can be formed and these are 1×1 and 3×3 matrices, respectively.

AB =
[

1 3 2
] 5

6
4

=
[

1 ·5+3 ·6+2 ·4
]
=
[

31
]

BA =

 5
6
4

[
1 3 2

]
=

 5 ·1 5 ·3 5 ·2
6 ·1 6 ·3 6 ·2
4 ·1 4 ·3 4 ·2

=

 5 15 10
6 18 12
4 12 8



Unlike numerical multiplication, matrix products AB and BA need not be equal. In fact they
need not even be the same size, as Example 2.3.5 shows. It turns out to be rare that AB = BA
(although it is by no means impossible), and A and B are said to commute when this happens.

Example 2.3.6

Let A =

[
6 9

−4 −6

]
and B =

[
1 2

−1 0

]
. Compute A2, AB, BA.

7As for numbers, we write A2 = A ·A, A3 = A ·A ·A, etc. Note that A2 is defined if and only if A is of size n×n for
some n.
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Solution. A2 =

[
6 9

−4 −6

][
6 9

−4 −6

]
=

[
0 0
0 0

]
, so A2 = 0 can occur even if A 6= 0.

Next,

AB =

[
6 9

−4 −6

][
1 2

−1 0

]
=

[
−3 12

2 −8

]
BA =

[
1 2

−1 0

][
6 9

−4 −6

]
=

[
−2 −3
−6 −9

]
Hence AB 6= BA, even though AB and BA are the same size.

Example 2.3.7

If A is any matrix, then IA = A and AI = A, and where I denotes an identity matrix of a size
so that the multiplications are defined.

Solution. These both follow from the dot product rule as the reader should verify. For a
more formal proof, write A =

[
a1 a2 · · · an

]
where a j is column j of A. Then

Definition 2.9 and Example 2.2.11 give

IA =
[

Ia1 Ia2 · · · Ian
]
=
[

a1 a2 · · · an
]
= A

If e j denotes column j of I, then Ae j = a j for each j by Example 2.2.12. Hence
Definition 2.9 gives:

AI = A
[

e1 e2 · · · en
]
=
[

Ae1 Ae2 · · · Aen
]
=
[

a1 a2 · · · an
]
= A

The following theorem collects several results about matrix multiplication that are used every-
where in linear algebra.

Theorem 2.3.3
Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the
indicated matrix products are defined. Then:

1. IA = A and AI = A where I denotes an
identity matrix.

2. A(BC) = (AB)C.

3. A(B+C) = AB+AC.

4. (B+C)A = BA+CA.

5. a(AB) = (aA)B = A(aB).

6. (AB)T = BT AT .

Proof. Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

1. If C =
[

c1 c2 · · · ck
]

in terms of its columns, then BC =
[

Bc1 Bc2 · · · Bck
]

by Defi-
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nition 2.9, so

A(BC) =
[

A(Bc1) A(Bc2) · · · A(Bck)
]

Definition 2.9

=
[
(AB)c1 (AB)c2 · · · (AB)ck)

]
Theorem 2.3.1

= (AB)C Definition 2.9

4. We know (Theorem 2.2.2) that (B+C)x = Bx+Cx holds for every column x. If we write
A =

[
a1 a2 · · · an

]
in terms of its columns, we get

(B+C)A =
[
(B+C)a1 (B+C)a2 · · · (B+C)an

]
Definition 2.9

=
[

Ba1 +Ca1 Ba2 +Ca2 · · · Ban +Can
]

Theorem 2.2.2

=
[

Ba1 Ba2 · · · Ban
]
+
[

Ca1 Ca2 · · · Can
]

Adding Columns

= BA+CA Definition 2.9

6. As in Section 2.1, write A = [ai j] and B = [bi j], so that AT = [a′i j] and BT = [b′i j] where a′i j = a ji

and b′ji = bi j for all i and j. If ci j denotes the (i, j)-entry of BT AT , then ci j is the dot product
of row i of BT with column j of AT . Hence

ci j = b′i1a′1 j +b′i2a′2 j + · · ·+b′ima′m j = b1ia j1 +b2ia j2 + · · ·+bmia jm

= a j1b1i +a j2b2i + · · ·+a jmbmi

But this is the dot product of row j of A with column i of B; that is, the ( j, i)-entry of AB;
that is, the (i, j)-entry of (AB)T . This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix multiplication. It as-
serts that the equation A(BC) = (AB)C holds for all matrices (if the products are defined). Hence
this product is the same no matter how it is formed, and so is written simply as ABC. This ex-
tends: The product ABCD of four matrices can be formed several ways—for example, (AB)(CD),
[A(BC)]D, and A[B(CD)]—but the associative law implies that they are all equal and so are written
as ABCD. A similar remark applies in general: Matrix products can be written unambiguously with
no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact that AB and
BA need not be equal means that the order of the factors is important in a product of matrices.
For example ABCD and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix may
change (or may not be defined). Ignoring this warning is a source of many errors by
students of linear algebra!
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Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. They assert that A(B+C) =
AB+AC and (B+C)A = BA+CA hold whenever the sums and products are defined. These rules
extend to more than two terms and, together with Property 5, ensure that many manipulations
familiar from ordinary algebra extend to matrices. For example

A(2B−3C+D−5E) = 2AB−3AC+AD−5AE
(A+3C−2D)B = AB+3CB−2DB

Note again that the warning is in effect: For example A(B−C) need not equal AB−CA. These rules
make possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression A(BC−CD)+A(C−B)D−AB(C−D).

Solution.

A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+(AC−AB)D− (AB)C+(AB)D
= ABC−ACD+ACD−ABD−ABC+ABD
= 0

Example 2.3.9 and Example 2.3.10 below show how we can use the properties in Theorem 2.3.2
to deduce other facts about matrix multiplication. Matrices A and B are said to commute if
AB = BA.

Example 2.3.9

Suppose that A, B, and C are n×n matrices and that both A and B commute with C; that
is, AC =CA and BC =CB. Show that AB commutes with C.

Solution. Showing that AB commutes with C means verifying that (AB)C =C(AB). The
computation uses the associative law several times, as well as the given facts that AC =CA
and BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B =C(AB)

Example 2.3.10

Show that AB = BA if and only if (A−B)(A+B) = A2 −B2.

Solution. The following always holds:

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2 (2.6)

Hence if AB = BA, then (A−B)(A+B) = A2 −B2 follows. Conversely, if this last equation
holds, then equation (2.6) becomes

A2 −B2 = A2 +AB−BA−B2
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This gives 0 = AB−BA, and AB = BA follows.

In Section 2.2 we saw (in Theorem 2.2.1) that every system of linear equations has the form

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant matrix. Thus
the system of linear equations becomes a single matrix equation. Matrix multiplication can yield
information about such a system.

Example 2.3.11

Consider a system Ax = b of linear equations where A is an m×n matrix. Assume that a
matrix C exists such that CA = In. If the system Ax = b has a solution, show that this
solution must be Cb. Give a condition guaranteeing that Cb is in fact a solution.

Solution. Suppose that x is any solution to the system, so that Ax = b. Multiply both
sides of this matrix equation by C to obtain, successively,

C(Ax) =Cb, (CA)x =Cb, Inx =Cb, x =Cb

This shows that if the system has a solution x, then that solution must be x =Cb, as
required. But it does not guarantee that the system has a solution. However, if we write
x1 =Cb, then

Ax1 = A(Cb) = (AC)b

Thus x1 =Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 2.3.11 lead to important information about matrices; this will be pursued
in the next section.

Block Multiplication

Definition 2.10 Block Partition of a Matrix
It is often useful to consider matrices whose entries are themselves matrices (called blocks).
A matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B =
[

b1 b2 · · · bk
]

where the b j are the columns of B

is such a block partition of B. Here is another example.
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Consider the matrices

A =


1 0 0 0 0
0 1 0 0 0
2 −1 4 2 1
3 1 −1 7 5

=

[
I2 023
P Q

]
and B =


4 −2
5 6
7 3

−1 0
1 6

=

[
X
Y

]

where the blocks have been labelled as indicated. This is a natural way to partition A into blocks in
view of the blocks I2 and 023 that occur. This notation is particularly useful when we are multiplying
the matrices A and B because the product AB can be computed in block form as follows:

AB =

[
I 0
P Q

][
X
Y

]
=

[
IX +0Y
PX +QY

]
=

[
X

PX +QY

]
=


4 −2
5 6

30 8
8 27


This is easily checked to be the product AB, computed in the conventional manner.

In other words, we can compute the product AB by ordinary matrix multiplication, using blocks
as entries. The only requirement is that the blocks be compatible. That is, the sizes of the blocks
must be such that all (matrix) products of blocks that occur make sense. This means that the number
of columns in each block of A must equal the number of rows in the corresponding block of B.

Theorem 2.3.4: Block Multiplication

If matrices A and B are partitioned compatibly into blocks, the product AB can be
computed by matrix multiplication using blocks as entries.

We omit the proof.
We have been using two cases of block multiplication. If B =

[
b1 b2 · · · bk

]
is a matrix

where the b j are the columns of B, and if the matrix product AB is defined, then we have

AB = A
[

b1 b2 · · · bk
]
=
[

Ab1 Ab2 · · · Abk
]

This is Definition 2.9 and is a block multiplication where A = [A] has only one block. As another
illustration,

Bx =
[

b1 b2 · · · bk
]


x1
x2
...

xk

= x1b1 + x2b2 + · · ·+ xkbk

where x is any k×1 column matrix (this is Definition 2.5).
It is not our intention to pursue block multiplication in detail here. However, we give one more

example because it will be used below.
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Theorem 2.3.5

Suppose matrices A =

[
B X
0 C

]
and A1 =

[
B1 X1
0 C1

]
are partitioned as shown where B and

B1 are square matrices of the same size, and C and C1 are also square of the same size.
These are compatible partitionings and block multiplication gives

AA1 =

[
B X
0 C

][
B1 X1
0 C1

]
=

[
BB1 BX1 +XC1

0 CC1

]

Example 2.3.12

Obtain a formula for Ak where A =

[
I X
0 0

]
is square and I is an identity matrix.

Solution. We have A2 =

[
I X
0 0

][
I X
0 0

]
=

[
I2 IX +X0
0 02

]
=

[
I X
0 0

]
= A. Hence

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful in computing
products of matrices in a computer with limited memory capacity. The matrices are partitioned
into blocks in such a way that each product of blocks can be handled. Then the blocks are stored
in auxiliary memory and their products are computed one by one.

Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways other than the
study of linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by arrows (called
edges). For example, the vertices could represent cities and the edges available flights. If the graph
has n vertices v1, v2, . . . , vn, the adjacency matrix A =

[
ai j

]
is the n×n matrix whose (i, j)-entry

ai j is 1 if there is an edge from v j to vi (note the order), and zero otherwise. For example, the

adjacency matrix of the directed graph shown is A =

 1 1 0
1 0 1
1 0 0

.

v1 v2

v3

A path of length r (or an r-path) from vertex j to vertex i is a
sequence of r edges leading from v j to vi. Thus v1 → v2 → v1 → v1 → v3
is a 4-path from v1 to v3 in the given graph. The edges are just the
paths of length 1, so the (i, j)-entry ai j of the adjacency matrix A is the
number of 1-paths from v j to vi. This observation has an important

extension:
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Theorem 2.3.6
If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar is
the number of r-paths v j → vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =

 1 1 0
1 0 1
1 0 0

 , A2 =

 2 1 1
2 1 0
1 1 0

 , and A3 =

 4 2 1
3 2 1
2 1 1


Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1 → v2 (in fact they are v1 → v1 → v2
and v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there are no 2-paths v3 → v2, as the
reader can verify. The fact that no entry of A3 is zero shows that it is possible to go from any vertex
to any other vertex in exactly three steps.

To see why Theorem 2.3.6 is true, observe that it asserts that

the (i, j)-entry of Ar equals the number of r-paths v j → vi (2.7)

holds for each r ≥ 1. We proceed by induction on r (see Appendix ??). The case r = 1 is the
definition of the adjacency matrix. So assume inductively that (2.7) is true for some r ≥ 1; we must
prove that (2.7) also holds for r+1. But every (r+1)-path v j → vi is the result of an r-path v j → vk
for some k, followed by a 1-path vk → vi. Writing A =

[
ai j

]
and Ar =

[
bi j

]
, there are bk j paths of

the former type (by induction) and aik of the latter type, and so there are aikbk j such paths in all.
Summing over k, this shows that there are

ai1b1 j +ai2b2 j + · · ·+ainbn j (r+1)-paths v j → vi

But this sum is the dot product of the ith row
[

ai1 ai2 · · · ain
]

of A with the jth column
[

b1 j b2 j · · · bn j
]T

of Ar. As such, it is the (i, j)-entry of the matrix product ArA = Ar+1. This shows that (2.7) holds
for r+1, as required.

Exercises for 2.3

Exercise 2.3.1 Compute the following matrix
products.

[
1 3
0 −2

][
2 −1
0 1

]
a)

[
1 −1 2
2 0 4

] 2 3 1
1 9 7

−1 0 2

b)

[
5 0 −7
1 5 9

] 3
1

−1

c)

[
1 3 −3

] 3 0
−2 1

0 6

d)

 1 0 0
0 1 0
0 0 1

 3 −2
5 −7
9 7

e)
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[
1 −1 3

] 2
1

−8

f)

 2
1

−7

[
1 −1 3

]
g)

[
3 1
5 2

][
2 −1

−5 3

]
h)

[
2 3 1
5 7 4

] a 0 0
0 b 0
0 0 c

i)

 a 0 0
0 b 0
0 0 c

 a′ 0 0
0 b′ 0
0 0 c′

j)

b.
[
−1 −6 −2

0 6 10

]
d.

[
−3 −15

]
f. [−23]

h.
[

1 0
0 1

]

j.

 aa′ 0 0
0 bb′ 0
0 0 cc′


Exercise 2.3.2 In each of the following cases, find
all possible products A2, AB, AC, and so on.

a. A =

[
1 2 3

−1 0 0

]
, B =

[
1 −2
1
2 3

]
,

C =

 −1 0
2 5
0 5


b. A =

[
1 2 4
0 1 −1

]
, B =

[
−1 6

1 0

]
,

C =

 2 0
−1 1

1 2



b. BA =

[
−1 4 −10

1 2 4

]
, B2 =

[
7 −6

−1 6

]
,

CB =

 −2 12
2 −6
1 6


AC =

[
4 10

−2 −1

]
, CA =

 2 4 8
−1 −1 −5

1 4 2


Exercise 2.3.3 Find a, b, a1, and b1 if:

a.
[

a b
a1 b1

][
3 −5

−1 2

]
=

[
1 −1
2 0

]
b.

[
2 1

−1 2

][
a b
a1 b1

]
=

[
7 2

−1 4

]

b. (a, b, a1, b1) = (3, 0, 1, 2)

Exercise 2.3.4 Verify that A2 −A−6I = 0 if:[
3 −1
0 −2

]
a)

[
2 2
2 −1

]
b)

b. A2 − A − 6I =

[
8 2
2 5

]
−

[
2 2
2 −1

]
−[

6 0
0 6

]
=

[
0 0
0 0

]

Exercise 2.3.5 Given A =

[
1 −1
0 1

]
, B =[

1 0 −2
3 1 0

]
,

C =

 1 0
2 1
5 8

, and D =

[
3 −1 2
1 0 5

]
, verify the

following facts from Theorem 2.3.1.

A(B−D) = AB−ADa) A(BC) = (AB)Cb)
(CD)T = DTCTc)

b. A(BC)=

[
1 −1
0 1

][
−9 −16

5 1

]
=

[
−14 −17

5 1

]
=[

−2 −1 −2
3 1 0

] 1 0
2 1
5 8

= (AB)C
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Exercise 2.3.6 Let A be a 2×2 matrix.

a. If A commutes with
[

0 1
0 0

]
, show that

A =

[
a b
0 a

]
for some a and b.

b. If A commutes with
[

0 0
1 0

]
, show that

A =

[
a 0
c a

]
for some a and c.

c. Show that A commutes with every 2× 2 ma-
trix
if and only if A =

[
a 0
0 a

]
for some a.

b. If A =

[
a b
c d

]
and E =

[
0 0
1 0

]
, compare

entries an AE and EA.

Exercise 2.3.7

a. If A2 can be formed, what can be said about
the size of A?

b. If AB and BA can both be formed, describe the
sizes of A and B.

c. If ABC can be formed, A is 3×3, and C is 5×5,
what size is B?

b. m×n and n×m for some m and n

Exercise 2.3.8

a. Find two 2×2 matrices A such that A2 = 0.

b. Find three 2×2 matrices A such that (i) A2 = I;
(ii) A2 = A.

c. Find 2×2 matrices A and B such that AB = 0
but BA 6= 0.

b. i.
[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

1 1
0 −1

]
ii.

[
1 0
0 0

]
,
[

1 0
0 1

]
,
[

1 1
0 0

]

Exercise 2.3.9 Write P =

 1 0 0
0 0 1
0 1 0

, and let A

be 3×n and B be m×3.

a. Describe PA in terms of the rows of A.

b. Describe BP in terms of the columns of B.

Exercise 2.3.10 Let A, B, and C be as in Exer-
cise 2.3.5. Find the (3, 1)-entry of CAB using exactly
six numerical multiplications.

Exercise 2.3.11 Compute AB, using the indicated
block partitioning.

A =


2 −1 3 1
1 0 1 2
0 0 1 0
0 0 0 1

 B =


1 2 0

−1 0 0
0 5 1
1 −1 0


Exercise 2.3.12 In each case give formulas for all
powers A, A2, A3, . . . of A using the block decompo-
sition indicated.

a. A =

 1 0 0
1 1 −1
1 −1 1



b. A =


1 −1 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1



b. A2k =


1 −2k 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 for k = 0, 1, 2, . . . ,

A2k+1 = A2kA =


1 −(2k+1) 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1


for k = 0, 1, 2, . . .

Exercise 2.3.13 Compute the following using
block multiplication (all blocks are k× k).
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[
I X

−Y I

][
I 0

Y I

]
a)

[
I X
0 I

][
I −X
0 I

]
b)[

I X
][

I X
]Tc)

[
I XT

][
−X I

]Td)[
I X
0 −I

]n

any n ≥ 1e) [
0 X
I 0

]n

any n ≥ 1f)

b.
[

I 0
0 I

]
= I2k

d. 0k

f.
[

Xm 0
0 Xm

]
if n = 2m;

[
0 Xm+1

Xm 0

]
if n =

2m+1

Exercise 2.3.14 Let A denote an m×n matrix.

a. If AX = 0 for every n×1 matrix X , show that
A = 0.

b. If YA = 0 for every 1×m matrix Y , show that
A = 0.

b. If Y is row i of the identity matrix I, then YA
is row i of IA = A.

Exercise 2.3.15

a. If U =

[
1 2
0 −1

]
, and AU = 0, show that

A = 0.

b. Let U be such that AU = 0 implies that A = 0.
If PU = QU , show that P = Q.

Exercise 2.3.16 Simplify the following expressions
where A, B, and C represent matrices.

a. A(3B−C)+(A−2B)C+2B(C+2A)

b. A(B+C−D)+B(C−A+D)− (A+B)C
+(A−B)D

c. AB(BC−CB)+(CA−AB)BC+CA(A−B)C

d. (A−B)(C−A)+(C−B)(A−C)+(C−A)2

b. AB−BA

d. 0

Exercise 2.3.17 If A=

[
a b
c d

]
where a 6= 0, show

that A factors in the form A =

[
1 0
x 1

][
y z
0 w

]
.

Exercise 2.3.18 If A and B commute with C, show
that the same is true of:

A+Ba) kA, k any scalarb)

b. (kA)C = k(AC) = k(CA) =C(kA)

Exercise 2.3.19 If A is any matrix, show that both
AAT and AT A are symmetric.

Exercise 2.3.20 If A and B are symmetric, show
that AB is symmetric if and only if AB = BA.

We have AT = A and BT = B, so (AB)T = BT AT = BA.
Hence AB is symmetric if and only if AB = BA.

Exercise 2.3.21 If A is a 2×2 matrix, show that
AT A = AAT if and only if A is symmetric or

A =

[
a b
−b a

]
for some a and b.

Exercise 2.3.22

a. Find all symmetric 2×2 matrices A such that
A2 = 0.

b. Repeat (a) if A is 3×3.

c. Repeat (a) if A is n×n.

b. A = 0
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Exercise 2.3.23 Show that there exist no 2× 2
matrices A and B such that AB−BA = I. [Hint: Ex-
amine the (1, 1)- and (2, 2)-entries.]

Exercise 2.3.24 Let B be an n× n matrix. Sup-
pose AB = 0 for some nonzero m×n matrix A. Show
that no n × n matrix C exists such that BC = I.

If BC = I, then AB = 0 gives 0 = 0C = (AB)C =
A(BC) = AI = A, contrary to the assumption that
A 6= 0.

Exercise 2.3.25 An autoparts manufacturer
makes fenders, doors, and hoods. Each requires
assembly and packaging carried out at factories:
Plant 1, Plant 2, and Plant 3. Matrix A be-
low gives the number of hours for assembly and
packaging, and matrix B gives the hourly rates
at the three plants. Explain the meaning of the
(3, 2)-entry in the matrix AB. Which plant is
the most economical to operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods

 12 2
21 3
10 2

 = A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

[
21 18 20
14 10 13

]
= B

Exercise 2.3.26 For the directed graph below, find
the adjacency matrix A, compute A3, and determine
the number of paths of length 3 from v1 to v4 and
from v2 to v3.

v1 v2

v3v4

3 paths v1 → v4, 0 paths v2 → v3

Exercise 2.3.27 In each case either show the state-
ment is true, or give an example showing that it is
false.

a. If A2 = I, then A = I.

b. If AJ = A, then J = I.

c. If A is square, then (AT )3 = (A3)T .

d. If A is symmetric, then I +A is symmetric.

e. If AB = AC and A 6= 0, then B =C.

f. If A 6= 0, then A2 6= 0.

g. If A has a row of zeros, so also does BA for all
B.

h. If A commutes with A+B, then A commutes
with B.

i. If B has a column of zeros, so also does AB.

j. If AB has a column of zeros, so also does B.

k. If A has a row of zeros, so also does AB.

l. If AB has a row of zeros, so also does A.

b. False. If A =

[
1 0
0 0

]
= J, then AJ = A but

J 6= I.

d. True. Since AT = A, we have (I +AT = IT +
AT = I +A.

f. False. If A =

[
0 1
0 0

]
, then A 6= 0 but A2 = 0.

h. True. We have A(A + B) = (A + B)A; that
is, A2 + AB = A2 + BA. Subtracting A2 gives
AB = BA.

j. False. A =

[
1 −2
2 4

]
, B =

[
2 4
1 2

]
l. False. See (j).

Exercise 2.3.28

a. If A and B are 2×2 matrices whose rows sum
to 1, show that the rows of AB also sum to 1.

b. Repeat part (a) for the case where A and B
are n×n.
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b. If A = [ai j] and B = [bi j] and ∑ j ai j = 1 = ∑ j bi j,
then the (i, j)-entry of AB is ci j = ∑k aikbk j,
whence ∑ j ci j = ∑ j ∑k aikbk j = ∑k aik(∑ j bk j) =

∑k aik = 1. Alternatively: If e = (1, 1, . . . , 1),
then the rows of A sum to 1 if and only if Ae=
e. If also Be= e then (AB)e= A(Be) = Ae= e.

Exercise 2.3.29 Let A and B be n×n matrices for
which the systems of equations Ax = 0 and Bx = 0
each have only the trivial solution x = 0. Show that
the system (AB)x = 0 has only the trivial solution.

Exercise 2.3.30 The trace of a square matrix A,
denoted tr A, is the sum of the elements on the main
diagonal of A. Show that, if A and B are n× n ma-
trices:

tr (A+B) = tr A+ tr B.a)

tr (kA) = k tr (A) for any number k.b)

tr (AT ) = tr (A).c) tr (AB) = tr (BA).d)

tr (AAT ) is the sum of the squares of all entries
of A.

e)

b. If A = [ai j], then tr (kA) = tr [kai j] = ∑
n
i=1 kaii =

k ∑
n
i=1 aii = k tr (A).

e. Write AT =
[
a′i j

]
, where a′i j = a ji. Then AAT =(

∑
n
k=1 aika′k j

)
, so tr (AAT )=∑

n
i=1

[
∑

n
k=1 aika′ki

]
=

∑
n
i=1 ∑

n
k=1 a2

ik.

Exercise 2.3.31 Show that AB−BA = I is impos-
sible. [Hint: See the preceding exercise.]

Exercise 2.3.32 A square matrix P is called an
idempotent if P2 = P. Show that:

a. 0 and I are idempotents.

b.
[

1 1
0 0

]
,
[

1 0
1 0

]
, and 1

2

[
1 1
1 1

]
, are idem-

potents.

c. If P is an idempotent, so is I−P. Show further
that P(I −P) = 0.

d. If P is an idempotent, so is PT .

e. If P is an idempotent, so is Q = P+AP−PAP
for any square matrix A (of the same size as
P).

f. If A is n×m and B is m× n, and if AB = In,
then BA is an idempotent.

e. Observe that PQ = P2 +PAP−P2AP = P, so
Q2 = PQ+APQ−PAPQ = P+AP−PAP = Q.

Exercise 2.3.33 Let A and B be n× n diagonal
matrices (all entries off the main diagonal are zero).

a. Show that AB is diagonal and AB = BA.

b. Formulate a rule for calculating XA if X is
m×n.

c. Formulate a rule for calculating AY if Y is n×k.

Exercise 2.3.34 If A and B are n× n matrices,
show that:

a. AB = BA if and only if

(A+B)2 = A2 +2AB+B2

b. AB = BA if and only if

(A+B)(A−B) = (A−B)(A+B)

b. (A+B)(A−B) = A2 −AB+BA−B2, and (A−
B)(A+B) =A2+AB−BA−B2. These are equal
if and only if −AB+ BA = AB− BA; that is,
2BA = 2AB; that is, BA = AB.

Exercise 2.3.35 In Theorem 2.3.3, prove

part 3;a) part 5.b)

b. (A+B)(A−B) = A2 −AB+BA−B2 and (A−
B)(A+B) =A2−BA+AB−B2. These are equal
if and only if −AB+BA = −BA+AB, that is
2AB = 2BA, that is AB = BA.
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Exercise 2.3.36 Show that the product of two
reduced row-echelon matrices is also reduced row-
echelon.

See V. Camillo, Communications in Algebra 25(6),
(1997), 1767–1782; Theorem 2.3.2.
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